
Electrophoretic motion of a charged spherical particle
normal to a planar dielectric wall

Y. Hao, S. Haber *

Department of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa, Israel

Received 13 November 1996; received in revised form 25 November 1997

Abstract

The electrophoretic motion of a charged spherical particle perpendicular to a single planar dielectric
wall or that between a perfectly conducting wall and a dielectric wall is analytically studied. Particle
velocity is determined by a recti®ed Smoluchowski's velocity that accounts for wall e�ects. Parameters
a�ecting particle velocity are the direction of the applied electric ®eld, the ratio between the particle and
the wall zeta potentials, the ratio between particle diameter and its center distance to the walls, the ratio
between the dielectric constants of the ¯uid and that of the dielectric wall and the ratio between the
thickness of the dielectric layer and its distance to the particle center.

Two competing mechanisms govern the overall wall e�ect that charged particles experience. The ®rst
mechanism (explored in detail) stems from the drag force induced by the electroosmotic ¯ow that is
generated near the dielectric wall. It may cause either particle velocity retardation or enhancement.
Velocity retardation is obtained for negative values of wall to particle zeta potential ratios and a velocity
increase for positive ratios. Thus, a positively charged particle moving toward the dielectric wall
experiences a velocity increase when the wall zeta potential is positive, and a velocity retardation for
negative wall zeta potentials. The second mechanism is a purely hydrodynamic wall e�ect. It causes
particles that move perpendicular to the wall to experience a velocity retardation regardless of their
direction of motion. # 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The electrophoretic motion of a charged particle in externally bounded electrolyte solution is

of considerable interest in a wide range of applications such as, electrodeposition of paint
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(EDP) or electrocoating, an electrophoretic process in which the charged colloidal particles are

dispersed in solution and deposited on electrodes under the in¯uence of an electric ®eld (Beck,

1981). The electrophoretic velocity of a charged particle suspended in an unbounded ®eld is

given by Smoluchowski's equation (Probstein, 1994; Morrison, 1970; Hunter, 1981),

Up �
ezp
4pm

E1; �1�

provided that the thickness of the electrical double layer (the Debye length) is everywhere small

compared with particle dimension. Here e is the electrolyte solution permittivity, zp the Zeta

potential of the particle surface, m the ¯uid viscosity, and E1 the applied electric ®eld.

The presence of neighbouring particles or rigid boundaries close to the charged particle lead
to corrections of Smoluchowski's equation. The case in which an insulting sphere approaches a

planar conducting wall in a uniform electric ®eld was treated by Morrison and Stukel (1970)

using bipolar coordinates. Keh and Anderson (1985) investigated the same problem by using

the method of re¯ections and obtained an approximate solution for the electrophoretic velocity
of charged particles. Similarly, ``exact'' and asymptotic solutions for the electrophoretic

velocity of an insulated sphere moving parallel to an insulated planar wall were derived by Keh

and Chen (1988) and Keh and Anderson (1985) utilizing the two above-mentioned methods.

Keh and Jan (1996) took into account the polarization of the di�use species in the thin
particle-solute interaction layer for a colloidal sphere moving toward a planar wall.

Reed and Morrison (1976) studied the electrophoretic motions of two dielectric spheres
applying the spherical bipolar coordinates. Analysis of the same problem was presented by

Chen and Keh (1988) using the method of re¯ections.

Keh and Anderson (1985) suggested that the following boundary conditions prevail over the

enveloping surface of a particle and near a rigid wall bounding the ¯uid.

On a particle surface

n � rf � 0; �2�

v � U� O� r� ezp
4pm
�Iÿ nn� � rf; �3�

and on a stationary boundary surface

n � rf � 0 �insulated wall�; �4a�
or

f � Constant �conducting wall�; �4b�
and

v � ezw
4pm
�Iÿ nn� � rf; �5�

where f is the electric potential, v the ¯ow velocity, r the position vector. I the idem dyadic, n
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the unit vector normal to the surface, and U and OOO are the translational and angular velocity
of the particle, respectively.
In previous analyses, Morrison and Stukel (1970) and Keh and Anderson (1985) assumed

that the bounding wall is a perfect conductor. In many applications, however, that assumption
is invalid. For example, in the color printing industry, the reverse roll coating process employs
two parallel coating rolls that rotate with a ®xed speed ratio. Between the rolls a very narrow
gap is maintained (the nip region). The coating electrolytic ¯uid is driven into the nip region
between the rolls by the applicator where it separates with one layer transferred to the
backward rotating roll and the other passing through the nip region to form the metering ®lm.
Small charged particles, the pigments, embedded in the electrolytic ¯uid migrate driven by a
strong electric ®eld. The ®eld is applied between the perfectly conducting wall of the applicator
roll (the anode) and the backward rotating roll (the cathode) that is coated with a thin
dielectric layer. The printed matrix quality depends mainly on the lateral motion of the
pigments between the rolls and their deposition sites on the dielectric layer.
Normally, the order of magnitude of the diameter of the rolls is tens of centimeters and that

of the minimum gap between them is tens of micrometers. The thickness of the dielectric layer
and the particles diameter is of the order of micrometers. Thus, a geometrical model consisting
a spherical particle between planar walls provides a good approximation of the system
con®guration. In addition, the inclusion of the dielectric layer in our model not only mimics
the actual con®guration of the system, but it also adds a new electroosmotic e�ect to the
hydrodynamic and electrophoretic mechanisms that govern particle lateral motion. It is the
goal of this paper to analyze the di�erent mechanisms governing particle motion and their
relative signi®cance. In this context, we consider in Section 2 the case of a sphere moving near
a dielectric planar wall in an otherwise unbounded ¯uid. In Section 3, the perpendicular
electrophoretic motion of a particle between a conducting plane and a dielectric planar wall is
analyzed.

2. The electrophoretic motion of a particle perpendicular to a single dielectric wall

Consider the electrophoretic motion of a charged insulated spherical particle of radius a
perpendicular to an in®nite conducting plane wall covered with dielectric of thickness t. The
particle center is located at a distance b from the wall (Fig. 1). Polar (r, F, z) or spherical (r,
F, y) coordinates are used with the origin located at the sphere center. All of the F-dependent
terms vanish in the subsequent analysis due to axisymmetry.
In this problem an electrophoretic ¯ow ®eld is induced by the electric ®eld. Therefore, in

order to characterize the particle's electrophoretic motion, the electric ®eld about the particle
must be determined ®rst.

2.1. Assumptions

To capture the main e�ects characterizing particle motion, the following simplifying
assumptions are made:
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. The ¯uid is Newtonian;

. The ¯ow is quasi-steady and creeping (namely, a very low Reynolds number ¯ow);

. The particle is rigid and perfectly insulated. Both the particle and the planar wall surfaces
are assumed to be uniformly charged;

. The radius of the particle is much larger than the thickness of the electric double layer, say
the Debye thickness;

. Far from the particle, the applied electric ®eld acting perpendicular to the plane wall is
uniform;

. The ¯uid outside the double layer is neutral and is assumed to be of constant conductivity.

. The applied electric potential is much larger than the zeta potentials that develop over the
sphere and the dielectric plane.

2.2. Governing equation and boundary conditions for the electric ®eld

The governing equations for the electric potential distributions f and fw inside the
electrolyte and the dielectric layer, respectively, satisfy Laplace's equation (Morrison, 1970;

Fig. 1. The electrophoretic system con®guration.
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Probstein, 1994):

r2f � 0 @ ÿ b � z <1; �6�

r2fw � 0 @ÿ �b� t� � z < ÿb: �7�
Equations (6) and (7) with the appropriate boundary conditions will be solved by the method
of re¯ections. The electric ®eld, far from the particle, is supposed to be of uniform strength
E1, and directed along the z-axis. The wall beneath the dielectric (z <ÿbÿ t) is perfectly
conducting. On the interface between the electrolyte solution and the dielectric layer, Gauss'
law for electric ®eld densities must be observed (Haus and Melcher, 1989). Thus the potential
f is continuous and e(n � Hf) = ew(n � Hfw) is satis®ed at the interface. Here, e and ew are
permittivities of electrolyte solution and dielectric, respectively. Consequently, the boundary
conditions for the electric potential can be posed as:

n � rf � 0 at r � a: �8�

fw � C at z � ÿ�b� t�; �9�

f � fw

k�n � rf� � n � rfw

�
at z � ÿb; �10�

f4ÿ E1z as z41; �11�
where k= e/ew and C is a constant.

2.3. Re¯ections of electric potential f

In the following, a re¯ection method of solution (Happel and Brenner, 1983) is adopted.
Odd re¯ections satisfy boundary conditions over the planar walls and assume that the ¯uid
occupies the whole volume above the plane z =ÿ b. Even re¯ections satisfy boundary
conditions over the sphere surface and assume that the ¯uid occupies the unbounded volume
external to the sphere.

2.3.1. First re¯ections f(1), f(1)
w

The ®rst re¯ections of the electric potential f(1) and f(1)
w satisfy (6) and (7), are subjected to

boundary conditions (9)±(11) and assume absence of the particle.
The solutions inside the electrolyte:

f�1� � ÿE1z� C1 ÿ b � z <1; �12�
and inside the dielectric

f�1�w � ÿE1k�z� b� � E1b� C1 ÿ �b� t� � z � ÿb; �13�
are straightforward. From (13) and (9) we obtain
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C � E1b�1� kb� � C1;

where b= t/b. Since the additive constant C does not a�ect the ®nal results, we shall
henceforth assume that f= 0 at z =ÿ (b + t). Consequently

C1 � ÿE1b�1� kb�: �14�

2.3.2. Second re¯ection f(2)

The second re¯ection of the electric potential f(2) satis®es equation (6) and is subjected to
the following boundary conditions:

n � rf�2� � ÿn � rf�1� @ r � a; �15�

f�2� � 0 @ r41: �16�
Note that in this case the bounding walls are removed. The general solution of the harmonic
equation (6) in spherical coordinates is (Lamb, 1932):

f�2� �
X1
n�0

Anr
ÿnÿ1Pn�cos y�; �17�

where y is the latitude angle and Pn are the Legendre polynomials of order n. Obviously, f is
independent of the azimuthal angle due to axisymmetry of the problem and only terms that
decay at in®nity are included. Applying (12) and (15), and the orthogonality of the Legendre
polynomials yields

An � ÿ 1
2E1a

3 n � 1
0 n 6� 1

:

�
Thus, the exact solution of f(2) is:

f�2� � ÿ 1

2
E1

a3

r2
cos y

�ÿ 1

2
E1a3

z

�r2 � z2�3=2 : �18�

2.3.3. Third re¯ections f(3), f(3)
w

The third re¯ection of the electric potentials f(3) and f(3)
w satisfy the harmonic equations:

r2f�3� � 0; �19�

r2f�3�w � 0; �20�
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and the boundary conditions:

f�3�w � ÿf�2� � ÿ
E1a3

2

�b� t�
�r2 � �b� t�2�3=2 @ z � ÿ�b� t�; �21�

f�3� � f�3�w @ z � ÿb; �22a�

k�n � rf�3�� ÿ �n � rf�3�w � � ÿ�kÿ 1��n � rf�2��@ z � ÿb; �22b�

f�3� � 0 @ z41: �23�
Applying the Hankel transform (Sneddon, 1951),

F�x; z� �
Z 1
0

rf�r; z�J0�rx� dr;

(19) rewritten in cylindrical coordinates results in:

d2F
dz2
ÿ x2F � 0: �24�

The inverse Hankel transform is:

f�r; z� �
Z 1
0

xF�x; z�J0�rx� dx;

where J0 is the Bessel function of zero order and x a dummy variable. The general solution of

(24) that decays at in®nity is:

F�x; z� � A�x�eÿx�z�b�;
where A(x) is an unknown function of x. Consequently, the inverse transform yields,

f�r; z� �
Z 1
0

A�x�eÿx�z�b�xJ0�rx� dx: �25�

Similarly, the transformed electric potential f(3)
w satis®es the equation,

d2Fw

dz2
ÿ x2Fw � 0;

that possesses the following general solution:

Fw�x; z� � B�x� sinh �x�z� b�� � C�x� cosh �x�z� b��;
where B(x) and C(x) are yet to be determined functions of x. From Gradshteyn and Ryzhik

(1994), boundary condition (21) can be expressed as
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ÿB�x� sinh �xt� � C�x� cosh �xt� � ÿE1a3

2

Z 1
0

b� t

�r2 � �b� t�2�3=2 rJ0�rx�dr

� ÿE1a3

2
eÿ�b�t�x: �26�

Hence, the general solution of (20) is given by the inverse transformation

fw�r; z� �
Z 1
0

f C�x� cosh�xt�
sinh�xt� �

E1a3

2

eÿ�b�t�x

sinh�xt�
� �

sinh�x�z� b��

�C�x�cosh�x�z� b��gxJ0�rx� dx: �27�
Substituting (25) and (27) into boundary conditions (22) yields two algebraic equations for the

two unknown functions A(x) and C(x),

A�x� � C�x�; �28�

ÿkA�x� ÿ C�x� cosh�xt�
sinh�xt� ÿ

E1a3

2

eÿ�b�t�x

sinh�xt� � �1ÿ k�E1a
3

2
eÿbx: �29�

Finally, solving (28), (29) and using (26) results in

A�x� � ÿE1a3

2
eÿbx

cosh�xt� ÿ k sinh�xt�
cosh�xt� � k sinh�xt� ;

B�x� � ÿE1a3

2
eÿbx

cosh�xt� ÿ k sinh�xt� � 2keÿxt

cosh�xt� � k sinh�xt� ; �30�

C�x� � ÿE1a3

2
eÿbx

cosh�xt� ÿ k sinh�xt�
cosh�xt� � k sinh�xt� :

Consequently, the exact solution of the third re¯ection possesses the integral solution form

f�3� � ÿE1a3

2

Z 1
0

cosh�xt� ÿ k sinh�xt�
cosh�xt� � k sinh�xt� e

ÿ�z�2b�xxJ0�rx� dx; �31�

f�3�w �
E1a3

2

� Z 1
0

�kÿ 1�cosh�xt�
cosh�xt� � k sinh�xt� e

xzxJ0�rx�dx

ÿ
Z 1
0

keÿxt

cosh�xt� � k sinh�xt� e
ÿ�z�2b�xxJ0�rx�dx

�
�32�
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2.3.4. Fourth re¯ection g(4)

The fourth re¯ection satis®es the boundary conditions over the surface of a sphere embedded
in an unbounded ®eld,

n � rf�4� � ÿn � rf�3� @ r � a; �33�

f�4� � 0 @ r41: �34�
An approximate solution of (6) in terms of spherical coordinates is given by Keh and
Anderson (1985):

f�4� � 1

2

a3

r2
@f�3�

@ r

" #
jr�0 � 1

3

a5

r3
@2f�3�

@ r2

" #
jr�0 � 1

8

a7

r4
@3f�3�

@ r3

" #
jr�0 � . . . : �35�

Substituting (31) into (35) yields,

f�4� � E1a3

4

l3

r2
cos y

1

4
ÿ I1

� �
� 1

3

al4

r3
3

8
ÿ I2

� �
�sin2yÿ 2 cos2y�

� �
� o�a5l5�; �36�

where

l � a

b
;

I1 �
Z 1
0

2k sinh�xb�
cosh�xb� � k sinh�xb� x

2eÿ2x dx; �37a�

I2 �
Z 1
0

2k sinh�xb�
cosh�xb� � k sinh�xb� x

3eÿ2x dx: �37b�

2.3.5. Fifth re¯ection f(5), f(5)
w

The ®fth re¯ection ®eld satis®es the di�erential equations

rf�5� � 0; �38a�

rf�5�w � 0; �38b�
and boundary conditions,

f�5�w � ÿf�4� @ z � ÿ�b� t�; �39�

f�5� � f�5�w @ z � ÿb; �40a�

k�n � rf�5�� ÿ �n � rf�5�w � � ÿ�kÿ 1��n � rf�4��@ z � ÿb; �40b�
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f�5� � 0 @ z41: �41�
Applying Hankel transforms to equations (38), and using (36), (39), (40) and (41), we obtain:

f�5� � E1a3

4

Z 1
0

cosh�xt� ÿ k sinh�xt�
cosh�xt� � k sinh�xt� �l

3 1

4
ÿ I1

� �

� al4

3

3

8
ÿ I2

� �
x�eÿ�z�2b�xJ0�rx�xdx� o�al9�; �42�

where the solution process is similar to that of the third re¯ection.

2.3.6. Final electric potential f
The electric potential in the electrolyte solution that is given by the sum,

f � f�1� � f�2� � f�3� � f�4� � f�5� � � � �; �43�
represents an approximate solutions of f of o(l9). It satis®es exactly the boundary conditions
over the planar walls and only approximately those over the sphere surface.

2.4. The ¯ow ®eld equations and boundary conditions

Having obtained a solution for the electric ®eld about the particle, it is now possible to use a
similar method of re¯ections to obtain the ¯ow ®eld. Owing to su�ciently slow motion of the
particle, the ¯ow ®eld outside the thin double layer is governed by the Stokes equations,

r � v � 0; �44�

mr2v � rp; �45�
where m is the ¯uid viscosity and v and p are the velocity and pressure ®elds, respectively.
According to (3) and (5), the following boundary conditions must be satis®ed:

v � U� ezp
4pm
rf @ r � a; �46�

v � ezw
4pm
�Iÿ nn� � rf @ z � ÿb; �47�

v � 0 @ z � 1; �48�
where zp and zw are zeta potentials of the particle and the wall, respectively, and U is the
electrophoretic translational velocity of the particle. No angular velocity of the particle is
introduced due to axisymmetry of the problem.
The procedure used by Keh and Anderson (1985) for the determination of the ¯ow ®eld and

electrophoretic velocity of the particle is adopted here. In the following re¯ections, the even
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re¯ections are re¯ected from the particle while the odd re¯ections are re¯ected from the wall.
The boundary conditions for the even re¯ected ®elds can be expressed as:

v�i� � ÿv�iÿ1� �U�i=2� � ezp
4pm
r�f�iÿ1� � f�i��; �49�

where U(i/2) is related to the (iÿ 1)th re¯ected electric ®eld and ¯ow ®eld from the wall by:

U�i=2� � ÿ ezp
4pm
�rf�iÿ1��o � �v�iÿ1��o �

1

6
a2�r2v�iÿ1��o; �50�

where subscript o implies evaluation at the location of the particle center. The boundary
conditions for the re¯ected ®elds from the wall are

v�i� � ÿv�iÿ1� � ezw
4pm
�Iÿ nn� � r�f�iÿ1� � f�i�� �51�

2.5. Flow ®eld re¯ections

2.5.1. First re¯ection v(1)

Without the presence of the sphere no ¯ow is generated and exists. Thus over the whole
solution domain;

v�1� � 0: �52�
Applying (50), we have:

U�1� � ÿ ezp
4pm
�rf�1��o

� Upiz; �53�
where

Up �
ezpE1
4pm

;

since f(1) is known from (12).

2.5.2. Second re¯ection v(2)

Besides (44) and (45) the following boundary conditions should be satis®ed

v�2� � ÿv�1� �U�1� � ezp
4pmr�f�1� � f�2��

� Up�cos yir � 1
2 sin yiy�

@ r � a; �54�

v�2� � 0 @ r41: �55�
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Due to axisymmetry, the present problem can be treated by means of a stream function c,
which is de®ned in spherical coordinates (r,y) as

vr � ÿ 1

r2 sin y
@c
@ y

vy � 1

r sin y
@c
@ r
:

The di�erential equation satis®ed by the stream function is

E4�c� � 0; �56�
where

E2 � @2

@ r2
� 1ÿ Z2

r2
@2

@ Z2

Z � cos y

The boundary conditions (54) and (55) are transformed into

@c
@ Z
� a2UpZ

@c
@r
� 1

2
aUp�1ÿ Z2�

)
@ r � a; �57�

c
r2
40 @ r41: �58�

The general solution for (56) is (Happel and Brenner, 1983),

c�r; y� �
X1
n�2
�anrn � bnr

ÿn�1 � cnr
n�2 � dnr

ÿn�3�Cÿ1=2n �Z�; �59�

where Cÿ1/2n is the Gegenbauer polynomial of order n and rank (ÿ1/2). It is related to the

Lengendre polynomials as follows

Cÿ1=2n �Z� � Pnÿ2�Z� ÿ Pn�Z�
2nÿ 1

:

Applying boundary conditions (57) and (58) we get:

an � 0 cn � 0 dn � 0

bn � ÿa3Up n � 2

0 n 6� 2
:

(

Therefore,

c�2� � ÿ 1

2
Upa

3 sin
2y
r

; �60�
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v�2� � Up
a

r

� �3
�cos yir � 1

2
sin yiy�; �61�

represents an exact solution of the second re¯ection.

2.5.3. Third re¯ection v(3)

The boundary conditions that govern the third re¯ection are given by:

v�3� � ÿv�2� � ezw
4pm
�Iÿ nn� � r�f�2� � f�3��

� 3

2
�Up ÿUw� a3rb

�r2 � b2�5=2 �
Uwa

3

2

Z 1
0

cosh�xt� ÿ k sinh�xt�
cosh�xt� � k sinh�xt� e

ÿbxx2J1�rx�dx
� �

ir

� 1

2

Upa
3�r2 ÿ 2b2�
�r2 � b2�5=2 iz @ z � ÿb; �62�

v�3� � 0 @ z41; �63�
where

Uw � ezwE1
4pm

In terms of the stream function, the velocity components in cylindrical coordinates (r, z) can
be expressed as

vr � 1

r
@c
@ z

vz � ÿ 1

r
@c
@r
;

where the stream function satis®es the di�erential equations

E4�c� � 0; �64�
and the di�erential operator E2 is de®ned as:

E2 � @2

@ z2
� r

@

@ r
1

r
@

@r

� �
:

The boundary conditions (62) and (63) are transformed into:

@c
@ z
� r

3

2

a3rb

�r2 � b2�5=2 �Up ÿUw� �Uwa
3

2

Z 1
0

cosh�xt� ÿ k sinh�xt�
cosh�xt� � k sinh�xt� e

ÿbxx2J1�rx�dx
� �

; �65�

@c
@r
� ÿ r

2

Upa
3�r2 ÿ 2b2�
�r2 � b2�5=2 ; �66�

at z =ÿ b and
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c � 0 �67�
at z 41.
Equation (64) can be separated into two di�erential equations (Sonshine et al., 1966):

E2�W� � 0; �68�

E2�c� �W: �69�
Multiplying both sides of (68) by rJ1(rx) and integrating with respect to r over the (0,1)
domain yields:

d2O
dz2
ÿ x2O � 0; �70�

where O is the Hankel transform

O�x; z� �
Z 1
0

w�r; z�rJ1�rx�dr:

The inverse transform is given by

w�r; z� �
Z 1
0

O�x; z�xJ1�rx� dx;

where

w�r; z� �W�r; z�
r

:

The general solution of (70) is:

O�x; z� � A�x�eÿx�z�b� � B�x�ex�z�b�; �71�
where A(x) and B(x) are yet unknown functions of the dummy variable x. Now we apply the
following Hankel transform:

Q�x; z� �
Z 1
0

q�r; z�rJ1�rx� dr;

where

q�r; z� � c�r; z�
r

;

to (69) and obtain:

d2Q

dz2
ÿ x2Q � A�x�eÿx�z�b� � B�x�ex�z�b�: �72�

The general solution of (72) with boundary condition (67) is:
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Q � C�x�eÿx�z�b� �D�x��z� b�eÿx�z�b�: �73�
Consequently, with the aid of the inverse Hankel transform,

q�r; z� �
Z 1
0

Q�x; z�xJ1�rx� dx;

we obtain:

c�r; z� � r
Z 1
0

�C�x�eÿx�z�b� �D�x��z� b�eÿx�z�b��xJ1�rx�dx: �74�

Applying (65) and (66) to (74), respectively, we obtainZ 1
0

�xC�x� ÿD�x��xJ1�rx�dx �ÿ 3

2

a3rb

�r2 � b2�5=2 �Up ÿUw�

ÿUwa
3

2

Z 1
0

cosh�xt� ÿ k sinh�xt�
cosh�xt� � k sinh�xt� e

ÿbxx2J1�rx�dx; �75�

and Z 1
0

C�x�x2J0�rx�dx � 1

2

Upa
3�2b2 ÿ r2�
�r2 � b2�5=2 : �76�

SinceZ 1
0

eÿbxx2J1�rx� dx � 3rb

�r2 � b2�5=2 ;

and Z 1
0

eÿbxx2J0�rx� dx � 2b2 ÿ r2

�r2 � b2�5=2 :

(Gradshteyn and Ryzhik, 1994), we recover from (75) and (76),

xC�x� ÿD�x� � a3eÿbxx
2

2k sinh�xt�
cosh�xt� � k sinh�xt�Uw ÿUp�;
�

and

C�x� � Upa
3

2
eÿbx:

Thus, it is obtained that

D�x� � a3eÿbxx
2

2Up ÿ 2k sinh�xt�
cosh�xt� � k sinh�xt�Uw

� �
;
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and

c�r; z� � a3r
2

Z 1
0

fUp � 2Up ÿ 2k sinh�xt�
cosh�xt� � k sinh�xt�Uw

� �
�z� b�xgeÿ�z�2b�xxJ1�rx� dx:

Therefore,

v�3� �
�
a3

2

Z 1
0

��
Up ÿ 2k sinh�xt�

cosh�xt� � k sinh�xt�Uw

�
� 2k sinh�xt�

cosh�xt� � k sinh�xt�Uw ÿ 2Up

� �
�z� b�x

�
eÿ�z�2b�xx2J1�rx� dx

�
ir

� ÿ a3

2

Z 1
0

fUp � 2Up ÿ 2k sinh�xt�
cosh�xt� � k sinh�xt�Uw

� �
�z� b�xgeÿ�z�2b�xx2J0�rx�dx

�
iz;

�
is an exact solution of the third re¯ection. According to (50), we have:

U�2� � ÿ exp
4pm
�rf�3��o � �v�3��o �

1

6
a2�r2v�3��o� l3 ÿ 5

8
� I1

2
� gI2

2

� �
� l5

1

4
ÿ gI3

6

� �� �
Upiz;

�79�

where

I3 �
Z 1
0

2k sinh�xb�
cosh�xb� � k sinh�xb� x

4eÿ2x dx:

2.5.4. Fourth re¯ection v(4)

The fourth re¯ection v(4) can approximately be obtained by (Keh and Anderson, 1985)

v�4��r� � ezp
4pm

ÿ 1

2

a

r

� �3
3
rr

r2
ÿ I

h i
� �rf�3��o �

5

2

a3

r5
rrr� 5

6

a

r

� �5
2Irÿ 5

rrr

r2

� �� �
: �rrf�3��o � � � �

� �
:

�80�

Substitution of (31) into the above equations yields:

v�4� �Up ÿ 1

2

�
a

r

� �3

l3
1

4
ÿ I1

� �
cos yir � 1

2
sin yiy

� �
� 5

4

a

r

� �2
l4

3

8
ÿ I2

� �
1

2
sin2yÿ cos2y

� �
ir

�
� o�l4a4; l5a3�: �81�
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2.5.5. Fifth re¯ection v(5)

The boundary conditions governing the ®fth velocity re¯ection are:

v�5� � ÿv�4� � ezw
4pm
�Iÿ nn� � r�f�4� � f�5��@ z � ÿb; �82�

v�5�40 @ z41; �83�
where f(4) and f(5) are given by (36) and (42), respectively. Similar to the procedure that was
applied to obtain the third re¯ection, we use the Hankel transform twice to derive v(5).
Consequently, we get:

U�3� � ÿ ezp
4pm
�rf�5��o � �v�5��o �

1

6
a2�r2v�5��o

�
�
l6 ÿ 25

256
� 5

32
�3I2 ÿ I1� � 1

16
�2ÿ g�I1�4I1 ÿ 1�

� �
� o�l8�

�
Upiz: �84�

2.5.6. The approximate ¯ow ®eld and electrophoretic velocity
The sum of the foregoing velocity re¯ections:

v � v�1� � v�2� � v�3� � v�4� � v�5� � � � � ; �85�
and electrophoretic re¯ection velocities of the particle

U �U�1� �U�2� �U�3� � � � �

�
�
1ÿ 5

8
l3 1ÿ 4

5
�I1 � gI2�

� �
� 1

4
l5 1ÿ 2

3
gI3

� �
ÿ 25

256
l6 1ÿ 8

5
�3I2 ÿ I1� ÿ 16

25
�2ÿ g�I1�4I1 ÿ 1�

� �
� o�l8�

�
Upiz �86�

represent approximate solutions for the ¯ow ®eld generated by the electric ®eld and particle
electrophoretic velocity.

3. Results and discussion

The electrophoretic velocity (86) depends on four dimensionless parameters b, l, k and g.
The ®rst two determine the system's geometrical con®guration and the last two depend on the
system's electrical phenomenological coe�cients.
Fig. 2 shows plots of the electric ®eld around the particle and inside the dielectric layer. It

vividly shows that a tangential component of the electric ®eld near the dielectric wall does not
vanish and is largest at about one particle radius from the symmetry axis of the system. In case
the applied electric ®eld points toward the dielectric wall its tangential component near the wall
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points toward the axis of symmetry. The opposite is true for E1 pointing away from the
dielectric wall. It is also demonstrated that the electric ®eld arrows are squeezed between the
particle and the dielectric wall, the higher the values of b and k the more they are tilted with
respect to the E1 direction. As explained later, the foregoing observations make it easy to
understand the electric wall e�ect mechanism.

Fig. 2. Electric potential distribution around a charged particle for l= 0.5. (a) k = 3, b = 0.6; (b) k = 3, b = 1; (c)

k = 2, b = 0.6; and (d) k= 0.5, b = 0.6.
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Fig. 3 depicts the electrophoretic velocity dependence on l for various values of g both

positive and negative and for constant values of b= 0.8 and k=3. Clearly, the closer the

particle is to the wall (higher values of l) the higher is the velocity retardation or gain, where

Fig. 3. E�ect of zeta-potential ratio (g) on the particle electrophoretic motion for b = 0.8 and k = 3. (o) g = 2; (- -)
g =ÿ 1; (*) g=ÿ 0.5; (- � ) g = 0.5; (x) g = 1; ( . . . ) g = 2.
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the former occurs for negative g values and the latter for high positive g values. In the
discussion that follows we try to explore how these di�erent parameters a�ect the various
mechanisms that govern particle motion.
Two competing phenomenon a�ect particle velocity retardation or gain, the hydrodynamic,

and the electric wall e�ects. The purely hydrodynamic wall e�ect (solved by Keh and
Anderson, 1985) always causes velocity retardation regardless of particle direction of motion, a
fact also known from low Reynolds hydrodynamic theory (Happel and Brenner, 1983).
Notwithstanding, the electrical wall e�ect may cause either velocity retardation or gain
depending on the sign of g. Let us discuss this statement.
Smoluchowski's solution states that the direction of a charged particle electrophoretic

migration is determined by the sign of its zeta potential zp and the direction of the applied
electric ®eld E1. To simplify the discussion we, henceforth, assume that E1 points toward the
dielectric wall. Thus, a positively charged particle tends to move toward the dielectric wall and
a negatively charged particle tends to migrate away from it. The direction of the electroosmotic
¯ow near the dielectric wall is governed by the direction of the tangential component of the
applied electrical ®eld near the wall and the sign of zw. In case E1 points toward the dielectric
wall, the tangential component points toward the system's axis of symmetry (see Fig. 2).
Hence, for positive zw the ¯uid near the wall is induced to move radially away from the
symmetry axis of the system. That, in turn, induces an axial downward ¯ow along the
symmetry axis so that mass conservation requirements are satis®ed. The axial ¯ow induces a
drag force on the sphere that points toward the dielectric plane. Obviously, the opposite is true
for negative wall zeta potentials zw. Consequently, for a particle that tends to move toward the
dielectric wall (zp>0) the electroosmotic ¯ow tends to increase its velocity in case zw>0, and
retard it for zw<0. Clearly, the opposite is true for a particle moving away from the wall for
which zp<0. Now, for positive zp and zw, if we reverse the direction of E1, the particle moves
away from the dielectric plane but the electroosmotic ¯ow is also reversed causing a velocity
increase. Similarly, negative values of zp and zw cause a velocity increase only this time the
particle moves toward the plane. Thus, the following statement can summarize simply the
foregoing discussion on the electric wall e�ect: positive zeta potential ratios g result in an
enhanced particle velocity while negative g ratios cause velocity retardation. Evidently, the
higher the value of g= zw/zp the stronger is the induced electroosmotic ¯ow and the more
pronounced is the electric e�ect. It must be stressed that this enhancement/retardation
mechanism stems solely from incorporating the dielectric layer into the solution model. It is
totally absent in previously dealt problems in which the bounding wall was a perfect
conductor.
Finally, in case g < 0 the electric and hydrodynamic wall e�ects combine and the presence

of the wall causes the particle to slow down (when compared with its Smoluchowski's velocity).
For g>0 the electric and hydrodynamic wall e�ects oppose each other, and as g increases, they
almost cancel each other. Eventually, for g values larger than 2, the electric force overcomes
the hydrodynamic retardation e�ect and the particle moves faster than its Smoluchowski's
velocity.
The e�ects of b= t/b and k= e/ew on the electrophoretic velocity are illustrated in Fig. 4(a)±

(d). It is vividly seen from Fig. 4(a) and (c) that thinner dielectric layers (b decreasing) and
higher dielectric constants (k decreasing) result in a weaker electric wall e�ect. That is due to a
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corresponding decrease in the tangential component of the electric ®eld near the dielectric wall.
Consequently, the induced electroosmotic ¯ow is slower and the resulting drag force applied on
the sphere is decreased. For the limiting cases of b= 0 or k= 0, the results coincide with
those given by Keh and Anderson (1985).

Fig. 4. E�ects of the dielectric thickness (b) and the dielectric constant (k) on the particle electrophoretic motion. In

(a) and (b): (o) b = 1.2; (- � ) b = 0.8; (*) b = 0.4; (-) b = 0 (Keh and Anderson, 1985). In (c) and (d): (o) k = 3;
(- � ) k = 1.5; (*) k = 1; (x) k = 0.5; (-) k= 0 (Keh and Anderson, 1985).
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Streamline maps of the ¯ow ®eld induced by a particle for negative and positive values of g
are presented in Figs. 5 and 6, respectively, and in turn compared with that obtained by Keh

and Anderson (1985). The latter map possesses a single stagnation point that exists in the ®eld

bulk away from the particle and the wall. Notwithstanding, an additional stagnation point is

formed in case b and k do not vanish, the second point located between the sphere and the

Fig. 5. Velocity ®eld induced by a particle moving towards the dielectric wall that possesses a negative zeta-
potential. The particle moves slower than its Smoluchowski's velocity. Given l= 0.5, b = 0.8, g =ÿ 2. (a) k = 0
(Keh and Anderson, 1985); (b) k = 0.5; (c) k = 1.5; (d) k = 3.
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plane. For g = 2 the stagnation point is located closer to the plane than that obtained for

g =ÿ 2, and the map of the latter case is almost similar to that of Keh and Anderson (1985).

That observation supports qualitatively the previous discussion about the opposing

hydrodynamic and electrical wall e�ects in case g is positive.

Fig. 6. Velocity ®eld induced by a particle moving towards the dielectric wall that possesses a positive zeta-potential.
The particle moves faster than its Smoluchowski's velocity. Given l= 0.5, b= 0.8, g = 2. (a) k = 0 (Keh and
Anderson, 1985); (b) k = 0.5; (c) k = 1.5; (d) k= 3.
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4. Solution for the perpendicular electrophoretic motion of a particle between a conducting plane
and a dielectric planar wall

In this section the electrophoretic motion of a spherical particle perpendicular to two parallel

planar walls, one perfectly conducting and the other a dielectric, is studied (Fig. 7). The

distance from the particle center to the conducting wall is c.

The boundary conditions in this case are,

n � rf � 0 @ r � a; �87�

fw � 0; @ z � ÿ�b� t�; �88�

f � fw

k�n � rf� � n � rfw

�
@ z � ÿb; �89�

f � f0 �constant�@ z � c; �90�

Fig. 7. The electrophoretic system con®guration of a particle positioned between two parallel planar walls.

Y. Hao, S. Haber / International Journal of Multiphase Flow 24 (1998) 793±824816



for the electric ®eld,

v � U� ezp
4pm
rf @ r � a; �91�

Fig. 8. The electrophoretic velocity of a particle translating perpendicular to two parallel planar walls vs a for
constant a/(b + c) = 0.1. (- -) g= 2; (*) g=ÿ 2.
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v � ezw
4pm
�Iÿ nn� � rf @ z � ÿb; �92�

v � 0 @ z � c; �93�
for the ¯ow ®eld.

A single new non-dimensional parameter must be introduced here.

l2 � a

c
:

For the sake of symmetry we shall rede®ne l as l1=a/b and de®ne the useful parameter

a = l2/l1=b/c.

Following the procedure in Section 2, we solve the above problem by the method of re¯ections

with l1<1 and l2<1. Without the presence of the particle, the electric ®eld E is uniform

E � ÿ f0

b� c� kt

Solution of the ®rst four re¯ections yields the electrophoretic velocity of the particle

Fig. 9. The electrophoretic velocity and the Stokes mobility 6pmaU/F (Ganatos et al., 1980) vs a for constant

l1=0.5. (-) Ganatos et al., 1980; (*) g = 2; (+) g =ÿ 2.
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Fig. 10. The electric ®eld around a charged particle suspended between a conducting and a dielectric wall for

constant l1=0.4 and b = 0.8. (a) k = 3; (b) k = 1.5.
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Fig. 11. The velocity ®eld around a charged particle moving from the conducting towards the dielectric wall that

possesses a positive zeta-potential, for g = 1, k = 3, b = 0.8 and a/(b+ c) = 0.1. (a) l1=0.4 and a= 0.3; (b)
l1=0.2 and a = 1.
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Fig. 12. The velocity ®eld around a charged particle moving from the conducting towards the dielectric wall that
possesses a negative zeta-potential, for g =ÿ 1, k= 3, b = 0.8 and a/(b + c) = 0.1. (a) l1=0.4 and a= 0.3; (b)
l1=0.2 and a = 1.
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U �
��

1ÿ �l1 � l2�3
2

�I4 �
Z 1
0

�E�x�e�1�a�x � F�x�eÿ�1�a�x � G�x��1� a�xe�1�a�x

�H�x��1� a�xeÿ�1�a�x�x2 dx� �l1 � l2�5
6

Z 1
0

�ÿG�x�e�1�a�x �H�x�eÿ�1�a�x�x4 dx
�

�O��l1 � l2�6�
�
Upiz: �94�

Integral I4 and Coe�cients E(x), F(x), G(x) and H(x) are given in Appendix A.
Numerical results for the translational velocity of a particle undergoing electrophoresis in a

direction perpendicular to two parallel planar walls are depicted in Fig. 8, which illustrates the
comparatively stronger e�ect of g on the electrophoretic velocity of a particle in the vicinity of
the dielectric wall.
When the electroosmotic velocity induces a drag force that enhances the electrophoretic

forces (g positive) its e�ect is strongest for particle positions near the dielectric wall
(0 < a < 0.2). When the electroosmotic velocity induces a drag force that opposes the
electrophoretic forces (g negative) it adds to the hydrodynamic retardation e�ect and the
particle experiences only a gradual increase in its velocity as a increases.
A comparison between the normalized electrophoretic velocity U/Up and the non-

dimensional Stokes mobility 6pmaU/F (Ganatos et al., 1980) is illustrated in Fig. 9. For
0 < a < 0.4 the presence of the conducting wall is insigni®cant. It is also shown that the
electrophoretic velocity is less sensitive to wall e�ects than that encountered in an
hydrodynamic case.
Fig. 10 displays the electric ®eld between two parallel walls, while Figs. 11 and 12 show the

¯ow streamlines induced by a particle leaving or approaching the dielectric wall. The pattern
possesses a similar topology to that of Keh and Anderson (1985) in the region between the
particle and the conducting wall and to that of Section 2 in the region between the particle and
the dielectric.

Appendix A

The following integral and coe�cients appear in Section 4 and are given below:

I4 �
Z 1
0

�A�x�e�1�a�x ÿ B�x�eÿ�1�a�x�x2 dx; �A1�

E�x� �feÿ�1�a�x �1� a�4
a2

x2 ÿ eÿ�1�a�xsinh2
� �1� a�4

a2
x2
�

ÿ �1� a�2
a

xsinh��1� a�x� � sinh

� �1� a�2
a

x
�
sinh

� �1� a�
a

x
�

ÿ g
2
�eÿ�1�a�x � A�x� � B�x�� �1� a�4

a2
x2g=

� �1� a�4
a2

x2 ÿ sinh2
� �1� a�2

a
x
��

�A2�
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F�x� �
� �1� a�2

a
x sinh��1� a�x� ÿ sinh

� �1� a�2
a

x
�
sinh

� �1� a�
a

x
�

� g
2
�eÿ�1�a�x � A�x� � B�x�� �1� a�4

a2
x2
�
=

� �1� a�4
a2

x2 ÿ sinh2
� �1� a�2

a
x
��
; �A3�

G�x� �
�
ÿ �1� a�2

a
xeÿ�1�a�x � eÿ

�1�a�
a xsinh

� �1� a�2
a

x
�

� g
2
�eÿ�1�a�x � A�x� � B�x��

� �1� a�2
a

xÿ eÿ
�1�a�2

a xsinh

� �1� a�2
a

x
���

=� �1� a�4
a2

x2 ÿ sinh2
� �1� a�2

a
x
��
; �A4�

H�x� �
� �1� a�2

a
xe�1�a�x ÿ e

�1�a�
a xsinh

� �1� a�2
a

x
�

ÿ g
2
�eÿ�1�a�x � A�x� � B�x��

� �1� a�2
a

xÿ e
�1�a�2

a xsinh

� �1� a�2
a

x
���

=� �1� a�4
a2

x2 ÿ sinh2
� �1� a�2

a
x
��
; �A5�

where

A�x� � fcosh��1� a�bx�cosh��1� a�x� � k sinh��1� a�bx�sinh��1� a�x�geÿ�1�a�
2

a x

sinh

�
�1�a�2

a

�
xcosh��1� a�bx� � k cosh

�
�1�a�2

a x
�
sinh��1� a�bx�

;

B�x� �
fÿcosh��1� a�bx� � k sinh��1� a�bx�gcosh�

�
1�a
a

�
x�

sinh

�
�1�a�2

a x
�
cosh��1� a�bx� � k cosh

�
�1�a�2

a x
�
sinh��1� a�bx�

:
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